
Content Addressable Memory Project
NASA NAG-2 668

Semiannual Progress Report, March-August 1991

Rutgers University

New Brunswick, NJ 08903

J. Hail (P I) S. Levy (PI) D. Smith S. Wei
M. Murdocca

Laboratory for Computer Science Research

Department of Computer Science

K. Miyake

October 1, 1991

(NASA-CR-188981) CONTENT ADDRESSABLE MEMORY

PROJECT Semiannual Progress Report No. 2,

Mar. - Aug. I991 (Rutgers - The State

Univ.) 29 p CSCL 09B
G3/60

N92-I0299

Unclas
0048074

1 Overview

This report describes the last six months progress on tile Rutgers CAM Project.

The overall design of the system is complete at the architectural level and described in

section 2. The machine, shown in Figure 1 on page 2, is composed of two kinds of cells;

the CAM ceils, which include both memory and processor, and support local processing

within each cell; and the tree cells, which have a smaller instruction set, and provide global

processing over the CAM cells.

We have completed a parameterized design of the basic CAM cell. The parameters

are teclmology dependent and are concerned, not with the basic form of the cell, but such
characteristics as the width of the data word within the cell. The instruction set for the

CAM cells has been designed and is described in section 3. An instruction level simulator

has been designed, implemented, a.nd used to simulate algorithms on this architecture.

Progress has been made on the the final specification of the CPS and is described in

section 5. We have a partial instruction level simulator for this component but we have not

as yet settled on the final instruction set.

The gate level simulator described in section 4 is almost completed. It will be used to

evaluate the design the details of both tree and CAM cells as welt as the CPS.

The machine architecture has been driven by the design of algorithms whose requirements

are reflected in the resulting instruction set(s). A few of these algorithms are described in

section 6.

We have begun the design of a high level language, which not only will take advantage of

the potential parallelism, but whose compiler will be an expert (rule-based) system that will

take advantage of the associative properties of the CAM to support the compiling process.

A discussion of our approach to the compilation process is contained in section 7.

2 Hardware Design

Figure 1 shows the Rutger's CAM architecture as a collection tree sitting over a set of CAM

cell memories. This tree is composed of two types of nodes, leaf nodes termed CAM cells and

internal nodes termed TREE cells. The two types of cells serve complementary functions

within the architecture. CAM cells support local processing within each cell and its attached

memory while TREE cells provide global processing for data collection, data movement, and

parallel prefix operations over these same memories.

2.1 Supported Operations - a Functional Description

The supported operations fall into two major classes, local and global. Local operations

flmction in a pure SIMD fashion: the same instruction is executed in each CAM cell using

Figure 1: Collection tree composed of Tree and CAM cells

the same address in each CAM cell memory. They operate independently within each CAM

cell and do not communicate between CAM cells. The global operations also operate in

a SIMD fashion. In addition they execute the same instruction in each TREE cell _ and

through the use of these cells provide communication among the CAM cells and operations

that are dependent on data from all CAM ceils.

2.1.1 Local Operations

Local operations are performed independently within each CAM cell and its associated

memory in a SISD manner. The only extension to the standard SISD model is the typical

SIMD extension where each cell is enabled or disabled based on the setting of an activity

bit.

Two examples of the use of activity control are shown in Figure 2. Both examples add 2

to each CAM cell: one shows the results when all cells are enabled while the other shows the

results when some ceils are disabled. A value of 1 in the activity bit indicates that the cell

is enabled and will execute the instruction. A value of 0 in the activity bit indicates that

the cell is disabled and will not execute the instruction. Notice that when a cell is disabled

it maintains its previous state.

Without activity control
All cell enabled

With activity control

Some ceils disabled

activity bit 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0

initial state 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

final state 4 5 6 7 8 9 10 11 4 3 6 7 6 9 10 9

Figure 2: Local Add 2 on an 8 cell CAM

2.1.2 Global operations

Global operations can themselves be divided into two subclasses, unsegmented and seg-

mented. Unsegmented operations consider CAM cells as a single contiguous segment and

apply their functions to data in all CAM cells. Segmented operations partition the CAM

cells into independent segments and perform the desired operation on each segment in paral-

lei. As with local operations, global operations allow seIective participation through activity

control. Cells that are enabled send their data into the tree and receive their results from

the tree. Cells that are disabled do not send their data into the tree and do not receive

results from the tree but rather maintain their previous state.

Unsegmented operations: Unsegmented global operations accept their inputs from

the CAM cells, carry out the necessary computation, and place the final result back in the

1The instruction executed by every CAM cell and the one executed by every TREE cell need not be the
SO.hie.

CAM cells. Most of the global operations belong to the class of parallel prefix operations

otherwise termed scan operations. These operations apply a binary associative operator

() with identity element ¢ to an ordered set [xl,z2,...,z,_] of n elements and return the

ordered set [¢,xl,(xlOz_),---,(zlK)z2-'-Ozn-1)]. Such scans are termed exclusive scans

since element ri of the result is dependent on xj Vj < i but not dependent on xi. The

more common inclusive scan can be formed from tile input z;'s and tile exclusive scan vi's

by computing a:_Or_ locally in each CAM cell.

In this architecture the CAM cells are connected using a binary tree and may therefore

be considered ordered by any systematic tree traversal. The hardware supports preorder

and reverse preorder orderings, also known as left-to-right and right-to-left; however, in this

rel)ort olfly left-to-right orderings are described. The computations required by a scan are

performed in parallel in the tree nodes with partial results communicated between neighbors.

As with the local operations, unsegmented operations are extended to allow CAM cell data

to selectively participate in a computation based on the setting of an activity bit in the CAM

cell.

Two examples of an Unsegmented scan are presented in Figure 3. Both compute all

partial sums, one with all cells are enabled and another with some cells are disabled. A

value of 1 in the activity bit indicates that the cell is enabled and will participate in the

computation. A value of 0 in the activity bit indicates that the cell is disabled and will not

participate in the computation. Notice that when a cell is disabled it maintains its previous

state.

All cells enabled Some cells disabled

activity bit 1 i 1 1 1 1 1 1 1 0 1 1 0 1 1 0

initial state 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

final state 0 2 5 9 14 20 27 35 0 3 2 6 6 11 18 9

Figure 3: Unsegmented Partial Sum on an 8 cell CAM

Segmented operations: Segmented global operations operate much like their unseg-

mented counterparts; however, these operations partition the CAM cells in multiple in-

dependent segments. The segmentation is specified in segment bits that provide control

over scan operations. A left-to-right scan uses these bits to determine if a CAM cell is the

first element of a new segment and consequently whether a cell accepts data from its left

neighbor. If the segment bit is 1 the CAM cell is treated as the first cell of a new segment

and does not receive data from its left. If the bit is 0 the cell is a continuation of the current

segment and receives data from its left neighbor.

Figure 4 present two examples of a segmented scan that computes all partial sums. As

with unsegmented scans, one is an example without activity control while the other is an

example with activity control.

All cellsenabled Somecellsdisabled

segmentbit 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
activity bit 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0
initial state 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

final state 0 2 5 9 14 0 7 15 0 3 2 6 6 0 7 9

Figure 4: Segmented Partial Sum on an 8 cell CAM

2.2 Supported Operations- Hardware Implementation

Local and global operation modes are controlled by two bits stored in each CAM cell, the

activity and segment bits. Local operations are dependent only on the activity bit while

global operations depend on both bits. Instructions are executed under the control of these

bits as determined by dedicated hardware in the CAM and TREE cells.

Tiffs section describes the hardware dedicated to computing the effect of segment and

activity bits on an operation. The section is divided into three parts; local operations,

unsegmented global operations, and segmented global operations.

2.2.1 Local Operations

Local operations make no use of the collection tree and as such reference only the activity

bits. Each celi works independently of all other cells and updates its state based on the

setting of its activity bit. Conceptually, the operation used for this purpose is an enabled

write operation that writes the CAM cell's accumulator to the cell's memory if the activity

bit is 1 and does not write if the bit is 0.

Since the SIMD nature of the architecture requires all cells to write to nmmory if any

one writes to memory this conceptually simple operation is slightly nlore complex. The

enabled write is implemented using a technique similar to a standard DRAM read/refresh

cycle. The first step is to read from memory into the refresh register of each cell; the second

is to overwrite the refresh register with the cell's accumulator in every with the activity bit

set, and the third is to write the refresh register to memory in all celIs.

Using tlfis approach, memory accesses are independent of tile state of a cell's activity

bit and consequently performed by every cell. The selective overwrite of the refresh register

causes the memory of an enabled cell to be updated and the memory of a disabled cell to

be refreshed (i.e. state maintained), hnplemented as described, the enabled write requires

no 1note time than a typical DRAM read cycle.

2.2.2 Unsegmented Global Operations

These operations treat the CAM cells as one contiguous segment and use activity bits to

determine if a cell will participate in the operation: a 1 indicates the cell will participate

5

in the operation; a 0 indicates it will maintain state and not participate. Unlike its effect
on local operationsone CAM cell's activity bit can effectanother CAM cell's memory. As
noted in section 2.1.2most global operationsare parallel prefix (i.e. scan)operations. This
sectionwill describehow the hardwaresupports scanoperations.

Theseoperations requiredata to be processedin the collection tree. The techniquewe
haveadoptedperforms a scanin two phases;an up phaseduring which data is processed,
stored, and propagatedup tile collection tree; and a down phaseduring which the stored
data and a valueinjected at the root areprocessedand propagateddownthe collection tree.
EachTREE cell is connectedto its left child, right child, parent and containsone internal
register.

During eadl phaseof a scan,tree cellsperform two parallel operationsdeterminedby tile
type of scan(i.e. up or down) and the operationbroadcastto the ceils. During tile up phase
eachtreecell storesthe data from its left child into its internal register, appliesthe sPecified
operation to the data from its children,and routes this result to its parent. The downphase
works similarly; each tree cell routes the data from is parent to its left child, applies the
specifiedoperation to the data from its parent and internal register, and routes the result to
is right child. A syntactic description of this computation and communication is provided
in figure 5. Note that as in the abovedescription it is assumedthat valuescontainedin a
cell's internal register, vi, during the down phase were stored during the corresponding up

phase of the operation.

Figure 6 provides a detailed example showing the data transmission and storage of the two

phases of a plus scan without activity control(i.e, all cells participate). In this example each

TREE cell is shown as a rectangle containing a smaller rectangle that represents its internal

register. The up phase passes data from each leaf node to its parent where the required

computation (in this case addition) and communication is performed. Values transmitted

during this phase are represented by integers placed at at the top of an edge while the values

stored in internal registers are represented by the integers in the small rectangles. The up

phase is complete when the computation reaches the top (in this case when 44 is output

from the root) and the down phase is initiated.

A value of zero is introduced at the root at the beginning of the down phase. In this

phase data is passed down from parent to children. Values transmitted during this phase

are represented by the integers at the bottom of each edge. This phase is complete when

values have been transmitted to and stored by each leaf cell. Note that the value introduced

at the root during a down scan (in this case 0) represents the result of applying the TREE

cell operation to all data that precedes, in a left-to-right sense, the left most CAM cell.

When an unsegmented scan is performed with some cells disabled the computation and

communication of data in the collection tree nmst change. One way to accommodate this

change without altering the operation of the TREE cells is to locally preprocess the data in

the CAM cells, then perform an unsegmented scan with all activity set to 1, and fin_dly to

locally postprocess the data in the CAM cells• This approach permits CAM cells to have the

appearance of being disabled in an unsegmented scan without processing activity information

in the collection tree; however, this approach does not generalize to allow segmented scans or

up" vp ,-- vt(>v,, down: v,. _ vp(>vi

,oi _-- _3l Vl _ Vp

Figure 5: Syntax of up and down phases of a scan

lntital
state

final
state

2

0

/

3

2

1
4

5

5

9

440

8 9

27 35

Figure 6: Computation and Commulficatioa for both phases of a plus scan

other global operations. An alternative approach, the one adopted for this architecture, is to

pass activity control information up and down the collection tree. This approach requires a

little additional hardware in each TREE node but provides uniform support for segmented,

as well as unsegmented operations, with or without activity control. Section 2.2.3 gives a

detailed explanation of how this is implemented.

2.2.3 Segmented Global Operations

Segmented operations require each TREE cell to be aware of the relationship between its

two children. For example, during the up phase of a plus scan the data arriving from the

cl[ildren must be added together if the clfildren belong to the same segment but must not

be added if the children belong to different segments. The necessity for a TREE cell to

react to segmentation information requires that the segment bits stored in the CAM cells be

transmitted to and within the collection tree.

This architecture implements segment computation and communication with dedicated

hardware in each TREE cell. The hardware accepts segment data from its two children,

computes its own segment data, and passes this result to its parent. This data is encoded

as a single bit that indicates if a new segment begins in the tree rooted at a TREE cell: a 1

indicates a new segment begins in tile tree and a 0 indicates that no new segment begins in

the tree. This representation provides a common semantics for segment information across

CAM and TREE cells. CAM cells store this information in their segment bit while TREE

cell compute this information as the or of their children's segment data.

Activity information must also be propagated within the collection tree; however, in

contrast to segmentation information that only is passed up the tree, activity information

must also be passed down the tree. The activity information is encoded as a 1 bit field that

is conceptually attached to each data value passed in the tree. A value of 1 indicates that

the data is significant and must be used in the computation while a value of 0 indicates that

the data is irrelevant and should not be used.

For unsegmented scans the activity information could be handled in the same manner as

segment information with the exception that activity information must also be propagated

down the tree. However, this is not possible for segmented scans where activity information

is dependent on segment information. Activity information, as was the case with segment

information, can be given unified semantics that encodes activity in a single bit field that

indicates if the associated data is relevant. Figure 7 shows the relationship between the

activity and segment bits for segmented scans with activity control. Subscripts 1 and r

denote information about the left child, right child, and parent of a node while superscripts

u and d denote the attachment of activity information to the up and down phases of a scan.

Figure 8 shows the data paths that comnmnicate the segment and activity information

to a TREE cell. These cells compute their own segment and activity as specified in Figure 7

and transmit this information as indicated by the edges. The segment and activity control

over the tree as a whole is determined by this hardware and the setting of the segment and

activity bits in the CAM cells as well as an single activity bit, a d, introduced at the root of

8

the collection tree.

$ e-- 3 l V Sr

a_ _ (_ Aat) v a:

a/d 6-- a d

da, ,-- (_ A ad)V a}'

Figure 7: General left-to-right segment and activity

u d
S a a

I I

S I a_ a
a d a u S

F r F

Figure 8: Communication paths for a Tree Node

Data Computation and Communication: Once each TREE cell has established its

segment and activity information the data for the corresponding operation is processed and

routed. Figures 9 and 10 show the computation performed by a TREE cell as a function

of the activity and segment information during the up and down phases. Notice that a A

indicates that the value transmitted or stored will not be used in the computation. Since the

knowledge that data is irrelevant to future computations is also transmitted in the activity
and status bits the hardware treats these entries as don't cares.

Figures 7, 9, and 10 provide a complete description of how tile TREE cells implement

a general left-to-right segment scan with activity control. Scans without activity control as

well as unsegmented scans are specialized version of the general scan and can be performed

by setting the CAM cell's segment and activity bit as required.

sr ar vp

0 0 0 A A

1 0 0 A A

0 0 1 A v.

1 0 1 A v_

0 1 0 vt vl

1 1 0 vt A

0 1 1 vt vz_v,

1 1 1 vl v,.

Figure 9: TREE cell Computation for up phase of unsegmented general scan

sl a_ a d Vl Vr

0 0 0 A A

0 0 1 v v vv
1 0 0 A A

1 0 1 vp A

0 1 0 A v_

0 1 1 vp vvOvl

1 1 0 A vl

1 1 1 vv vi

Figure 10: TREE cell Computation for down phase of unsegmented general scan

10

3 Instruction Set

At present, tile instruction set includes 192 instructions which can be divided into two

categories:

1. Vector (Tree) instructions (120): The operation performed by each instruction is on

the operands from all CAM cells. These instructions can be subdivided into the following

groups:

i)

ii)

iii)

iv)

v)

Scan (48): Each instruction performs one of "scan" (parallel prefix) operations such

as arithmetic sum, logic AND/OR/XOR, and MAX/MIN. The scan operation can be

done either left to right (start at the CAM cell of the lowest address) or right to left

(start at the CAM cell of the highest address). Each operation can be also done under

the activity control and/or segmentation control.

Shift (2_): Each instruction performs one of "shift" operations such as shift, skip-

shift (only active cells participate in the shift operation), rotate, and skip-rotate (only

active cells participate in the rotate operation). The number of positions to be shifted

is always one. The direction of a shift can be right to left (from higher address to lower

address) or left to right (from lower address to higher address). The operations can be

controlled by activity (mandatory for skip-shift and skip-rotate) and/or segmentation

flags.

Reduce (36): Each instruction performs one of "reduce" (collection) operations such

as arithmetic sum, logic AND/OR/XOR, and MAX/MIN. Like the scan operations,

reduce operations can be done either left to right (placing the result on the right of a

segment) or right to left (placing the result on the left of a segment). They can be also

under activity and/or segmentation control.

Broadcast (6): Each instruction performs a broadcast operation either for allCAM

cells or within each segment. These operations can be under activity and/or segmen-

tation control. For the broadcast within each segment, it can be done either left to

right (broadcasting from the left of a segment to the entire segment) or right to left

(broadcasting from the right of a segment to the entire segment).

Others (6): This group contains the instructions of setting an activity control flag (for

all CAM cells or each segment) or loading a value to some particular location of each

segment. These operations are always under activity and/or segmentation control.

2. Scalar (CAM cell) instructions (72): The operation performed by each instruction

is on the operands in each individual CAM cell. The scalar instructions include arithmetic

+/-/x, logic AND/OR/XOR/NOT, 2's complement, bitwise AND/OR, bit-shift (left to

right or right to left, and one or more bits), move, and comparison (<, <, =, >_, >, ¢). Each

instruction has two versions, one with activity control and one without activity control. If

an instruction is under activity control, it will be executed only when the activity flag of the
CAM cell is set to one.

11

The addressingmodesfor the instruction set are quite simple. For vector instructions,
besidesthe optional activity control, segmentationcontrol, starting value,and default value,
each instruction may have one or two sourceoperands and a destination address. The
sourceoperandscomefrom memory(direct addressing)or anaccumulatorwhich is a general-
purposeregister. Sincecurrently weassumethat eachCAM cellhasonly onegeneral-purpose
register, only oneoperandcan be from tile accumulator. We also assumethat there is only
one data path to memory. Thus, if an instruction has two sourceoperands,one shouldbe
from the accumulatorand tile other shouldbe from memory. The destination addresscan
be either memory (also direct addressing)or accumulator. However,if an instruction has
two sourceoperands,its destination addressnmst be tile accumulator. Scalarinstructions
may alsohavetwo sourceoperandsand a destination address,besidestile optional activity
control and tile number of bit positions to be shifted (for shift instructions). Similar to
vector instructions, scalar instructions also have the one data path and one accumulator
restrictions. However,a sourceoperandin a scalar instruction can be an immediatevalue
(i.e., immediateaddressingmode).

4 Gate Level Simulation

A gate-level simulator is being created in C to help design and test the hardware implementa-

tion of the CAM and CPS chips. The simulator reads in VHDL-like hierarclfical descriptions

of modules, readies them for simulation, and simulates their operation.

A partial list of simulator commands is shown in figure 11.

source <file> ; #

generate [module] ; #

destroy [module] ; #

read <file>; #

run [module] ; #

reset [module] ; #

[time:] <signal> <- <value>; #

[time:] show <signal>; #

read module descriptions from file

create a module instance for simulation

destroy the named module instance

read commands from file

begin simulation on the instance

reset signal values in the instance

assign a value to the specified signal

print information about the signal

Figure 11: Partial list of simulator commands.

In figure al, angle brackets (<>) refer to necessary arguments, while square brackets ([])

refer to optional ones. The simulator keeps track of a default module which is used when a

module name is omitted. Commands are normally processed immediately, but the optional

time argument may be used to assign and display signals while a simulation is running.

12

4.1 Module Definition

The simulator readsmodule definitions from namedfiles, and builds gate-leveldescriptions
of circuits. A moduledefinition consistsof the modulename,followedby lists of the ports (or
externalsignals),internal signals,and subcomponentsof the module. Ports are the external
connectionsto tile module. Ports passinformation betweenthe moduleand other modules
which may later referenceit. Internal signalsare signalscreatedby the module. They are
usedto passinformation betweenthe module'ssubcomponents.Componentsarepreviously
definedmoduleswhich perform subtasks.

Two types of modulesare recognizedby the sinmlator: Primitive modules, whose ac-

tions are defined by associated C-code, and Composite too&des, which are composed from

previously defined primitive and composite modules. Note that primitive modules have no

internal signals or components.

The simulator also recognizes two types of signals: Wires, which take their input from

a single primitive module, and Busses, which may take input from one or more special

primitives called tri-state drivers. Tri-state drivers have a special output state which allows

them to be connected to a bus but not actively drive the signal. During simulation, a bus

may assume an unknown state if its drivers assert two distinct values on it.

An example of module definition syntax is shown in figure 12 on page 15, which describes

an ilnplementation of a three-input AND module. We note that there are better ways of

constructing this module. In the example, the three-input AND gate is composed of two

two-input AND gates, which are in turn composed of primitive nand and inverter modules

(descriptions not shown). The description starts with the keyword module, followed by the

module name. Following the module name are optional port, signal, and component lists,

in order. A port list consists of the keyword ports, followed by lists of ports. Each list

contains a list of signals, followed by one of the keywords input, output, or inout, which

specifies the port type. The port types are used to help visualize the direction of data flow

between modules. A (internal) signal list consists of the keyword signals, followed by a list

of signal names. Internal signals are created by the module for conmmnication between its

submodules. A component list consists of the keyword components, followed by a list of

component descriptions. A component description begins with a component name, followed

by the module type of the component, and alist of signal names corresponding to the ports of

the previously defined module, ending with a semicolon. The keyword end ends the current

module description.

Some feasibility checks are performed on modules at the time of definition. Within a

module each signal and component must be given a unique nanle 2, which is used for signal

naming. Composite modules are also checked for compatibility with their components. Each

signal in a component description nmst match the previously defined module's list of ports.

This includes checking that busses are not connected to wires and that only one primitivc

module may output to a wire.

2The name of a signal is unique within a module; however, if a signal is available in different modules of
a design it will have several equivalent names, one for each module in which the signal is available

13

The motivation behind the naming restrictions can be seen in figure 13 on page 15, which

is a picture of the three-input AND of figure 12. The restrictions enable unique identification

of every signal in the module. Signals which are not present in the top level module are

referenced through their component, such as 'ab_and.z_bar'. This allows two instances of

a module to use the same local name for two different signals but to distinguish one signal

from the other by its position in the hierarchy. Signals 'ab_and.z_bar' and 'product.z_bar' in

Figure 13 are examples of this naming convention. Signals known in multiple contexts will

have multiple names each dependen_ on one of the contexts. An example of this is the signal

'ab', which is also known as 'ab_and.z' and 'product.x'.

412 Flattening

After definition, the selected module is flattened to ready it for execution. In the flattening

process, each composite module recursively connects its components directly to the signals

which affect them. By the end of flattening, primitive modules are connected directly to the

signals which affect them, and composite modules are effectively hidden from the simulator.

The shorter path between primitive modules and their signals results in faster simulations.

4.3 Simulation

The simulator is an event-driven simulator. In an event-driven simulation, module output

values are only recomputed when one of its inputs have changed. This means that less

extra computation is done compared to other simulation models, which results in shorter

simulation times. In our simulation model, each prinlitive module takes a single unit of time

for execution. Additional delays can be obtained by using special primitives called delay

modules.

Because of the built-in delay for primitive modules, each signal can change only once

during each time step. This allows us to process each time refit in three stages. First,

all necessary changes are made to signal values. Second, the values of affected busses are

evaluated. Finally, affected primitive modules are executed and their outputs are scheduled.

This method permits the detection of race conditions in modules and busses (when two or

more input signals change simultaneously, causing a short unstable state), and reduces the

mmlber of events needed to perform a simulation.

4.4 Future Enhancements

Future enhancements to the simulator include use of vector notation for groups of signals,

notation for specification of iterative and recursive modules, improvement of user interface,

and additional functionality for tracing and debugging simulations.

14

module and

ports

x y input

z output

signals

z_bar

component s

xy_nand hand x y z_bar;

-. z_inv inv z_bar z;

end

module three_input_and

ports

a b c input

p output

signals

ab

component s

ab_and and a bab;

product and abc p;

end

Figure 12: Composite definition of a three-input and module.

three_input_and

a I ab_an_ I
product

b z

zbar
C

P

Figure 13: Gra.phical representation of the three-input and.

15

5 CPS Simulation

An additional C-based instruction level simulator has been written to test the developed

architecture of the CPS portion of tile CAM.The simulator reads a user supplied program

written in a simple macro language and produces a trace of the executing program. The

input program defnes tile architecture of the CPS processing elements (PEs), and provides

tile inputs and simulation parameters.

The section of code shown below is taken from a sample input file to the simulator:

DEFINE NUMBER_OF_PES 64

DEFINE NUMBER_OF_PE_REGISTERS 64

LEGENDCOMMENT Test message in position 1

LEGENDCOMMENT Test message in position 2

COMMENT This is a comment

LOAD CROSSBAR

iiiiiiii I0000000 00000000 00000000 00000000 00000000 00000000 00011000

00000000 01000000 00000000 00000000 00000000 00000000 00000000 00000000

[64 rows totM]
00000000 00000000 00000000 00000000 00000000 00000110 00000000 00000000

PRINT CROSSBAR

LOADPE 00 123456789 10 11 12 13 14

23 24 24 26 27 28 29 30 31 32 33 34

45 46 47 48 49 50 51 52 53 54 55 56

LOADPE 10 123456 789 10 11 12 13 14

23 24 24 26 27 28 29 30 31 32 33 34

15 16 17 18 19 20 21 22

35 36 37 38 39 40 41 42 43 44

57 58 59 60 61 62 63

15 16 17 18 19 20 21 22

35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

LOADPE 6301 23456789 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

PRINT PE_REGISTERS

STEP COMMANDO(

As shown at tile top of the listing, the number of PEs and the number of PE registers

are a few of the parameters that are defined by the user. The language uses a simple

command+argument syntax which simplifies user modifications. The STEP command allows

the user to create complex hardware descriptions by writing C code that directly em,,lates

tile hardware. There are well-encapsulated sections in the C source code for the simulator

that simplify this process. The reason for taking this approach rather than creating a more

16

generalsimulator that doesnot place a burden on the user to write C code is that it is
difficult to capture tile form of the CPS while the CPS is being developed. The STEP

command takes an arbitrary number of arguments which are passed to the entry point in

the simulator where the user has access to custom routines.

The PRINT command generates a PostScript graphical output file. A portion of the

PostScript output is shown in Figure 14 on page 18. The crossbar settings are shown in

graphical form, and are also provided in tabular form (not shown). A hexadecimal dump of

the PE registers is created on each instance of the PRINT PE_REGISTERS command. The

user can tiros create an input file that contains data and commands to the simulator, and

generate a graphical trace of the operation of the CPS that is convenient to produce on a

PostScript output device.

The simulator supports step by step control of the CPS at the instruction level. Peek

and poke capabilities are supported so that the user can observe execution of a CPS program

and modify data as well as the crossbar switch settings.

The simulator and corresponding documentation are partially completed as of this report.

6 Function Level Simulation of Application Algorithms

The purpose of simulating algorithms is to find whether the defined instruction set

is sufficiently powerful for implementation of typical parallel algorithms and to evaluate

execution efficiency of these algorithms on our architecture using the instruction set.

For the simulation, we assume that there are N (up to 64k) CAM ceils, each containing

a memory of 32 words which can be also used as the aecunmlator or control registers (e.g.,

activity control, segmentation, etc.). These numbers represent a much smaller memory than

the architecture calls for, but we are running the simulation on a sequential nlachine at an

estimated 100-nfillion-to-one speed disadvantage compared to the actual CAM.

Simulation is done essentially at assembly language level. Each algorithm is written

using these instructions and embedded into a C host program which provides I/O facility

and control structures such as conditional or iterative statements (The functional capability

of the C host program will be eventually provided by the central processing system (CPS)).

The simulator is implemented in C. Each instruction is implemented as a procedure or

a function. Thus, each algorithm is realized by a series of procedure/flmction calls. In the

following, we describe in detail the simulation of three algorithms.

6.1 Expression parsing

Problem 1: Given an expression and an operator precedence grammar, parse the expres-

sion. (i.e. create the corresponding parse tree.) The grammar is to be represented by left

and right numerical precedence values for each operator. The ability to perform this basic

17

00

01

O2

03

04

O5

O6

07

08

09

i0

CROSSBAR SETTINGS

I

w

00 01 02 03 04 05 06 07 08 09 i0

PE

O0

01

Hex dump

00000000 00000001 3f3f0000 00000005,

00000008 00000009 7702fffe 0000000d

00000010 00000011 00000341 00000015

00000018 00000018 0000022a 0000001d

00000020 00000021 0000003d 00000025

00000028 00000029 00000004 00000035

00000030 00000031 0000003d 0000003d

00000038 00000039 0000000f 00000025

00000000 00000001 8f000ff0 00120000

00000008 00000009 00004000 00000022

00000010 00000011 ffa80000 3a320043

Figure 14: Postscript output of CPS Simulation

18

algorithmic task in parallel demonstrates the applicability of the CAM to the hoped-for area

of symbolic manipulation.

The initial input data include the expression, type of each operator or operand, and left

precedence and right precedence of each operator or operand. Each CAM ceil holds an item

(i.e., an operand or operator) as well as its type and left and right precedences. The type of

each item is defined as follows:

Type = i,

= __,

=3,

=4,

an operand;

an operator does not have any operand;

an operator has a left operand;

an operator has a right operand.

The left and right precedences of an operand are always 0. The operators with the lowest

precedence have 2 for left precedence and 1 for right precedence, respectively. The operators

with the second lowest precedence have 4 for left precedence and 3 for right precedence,

respectively, and so on. The resulting parse tree is represented by a vector (each CAM cell

holds an element). Each element of the vector indicates the address of its parent (0 means

the root of the tree). Table 1 on page 19 gives an example of Problem 2. We can see that

the root of the parse tree is operator '+' in CAM cell 2, operand 'A' in cell 1 and operator

'+' in cell 6 are two children of the root, etc.

Address of CAM cells: i 2 3 4 5 6 7

Expression: A + B * C + D

Type of items: 1 2 I 2 I 2 1

Left precedence: 0 2 0 4 0 2 0

Right precedence: 0 I 0 3 0 1 0

Parse tree (Parents): 2 0 4 6 4 2 6

+

/\
A +

/\
* D

/\
B C

Table 1: All example of Problem 2: Parsing A + B * C + D.

Algorithm 1. Expression parsing.

Input: The expression, type of each item (TY, and precedences of each iteln (LP and RP).

Output: The parse tree represented by a vector, PA, containing the parent address of each

item.

Method:

1. Initialization: Clear PAi of every CAM+

2. Check if only one CAM cell has PA = 0. If it is, (i.e., the cell contains the root of the

parse tree), output the parse tree and then stop. Otherwise, go to the next step.

3. For every CAM cell, say CAMi, in which its TYI is not 0, do the following:

19

i) Compareits LP with the RP of CAMi_= (For tile indexes of CAM cells, we do not

count the CAM cells in which their TY's are 0). Save the result of the comparison

in TMPi. If LP; > RPi_2, TMPi = 1, otherwise, TMPi = O.

ii) IfTY_ = 2 or 4 (i.e., an operator does not have any operand or has a right operand)

and TMPi = 1, copy the address of CAMi, i, to PAi-1 of CAMi_I.

iii) Compare its LP with the RP of CAMi_2 again. Save the result of the comparison

in TMPi_2. If LPi < RPi-2, TMPi_2 = 1, otherwise, TMPi_2 = 0.

iv) IfTYi = 2 or 3 (i.e., an operator does not have any operand or has a left operand)

and TMPi_2 = 1, copy the address of CAMi, i, to PA_+I of CAMi+I.

v) Change TY_: (a) If a CAM cell is holding an operand at this iteration (TY_ = 1),

it will not participate in the next iteration, and so set its TYi to 0. (b) If a CAM

cell is holding an operator which has a left child, set its Tgl to 3. (c) If a CAM

cell is holding an operator which has a right child, set its TYi to 4. (d) If a CAM

cell is holding an operator which has both left and right children, set its TY_ to

1, i.e., the operator will be considered as an operand at the next iteration.

vi) Change LPi and RPI: If an operator becomes an operand (T_ becomes 1) at the

last step, set its LP and RP to 0.

4. Count the number of CAM cells which have PA = 0. Go to Step 2. []

The number of instructions needed for each iteration is 66 (11 vector instructions and 55

scalar instructions), which is independent of the length of the input expression (i.e., the

number of operands and operators). The number of iterations required is equal to the

number of levels of the resulting parse tree minus 1. Therefore, if we assume that execution

of each vector instruction takes a constant time, the complexity of the algorithnl is O(h),

where h is the height of the parse tree. Since h is a function of the length of the input

expression, say L, we can see that the best case is h = O(logL) and the worst case is

h=O(L).

6.2 Value update in a specified region

Outside the area of symbolic manipulation, we wish to evaluate the CAM as a general

purpose maclfine for other tasks. This problem and the following one explore the ability of

the CAM to handle problems it was not designed for. Thus we explore techniques for region

labeling, a subpart of tile vision architectures evaluation suite. The architectural tradeoffs

made in the CAM are different from those in a machine intended for vision applications, so

this constitutes a test of "the edges of its envelope".

First, we simply try to identify and operate oil each element of a specified region in a

one-dimensional vector.

Problem 2: Assume that each CAM cell has an integer number in its memory,]l//.,_,i, 0 <

i _< N - 1. Now given a new value, k, and a vector of size N, V_, in which each element

2O

correspondsto a CAM cell (i.e., V_ _ M_c,i) and all elements are O's except that one element,

Vj, is 1, change the value of M,_c._ to k if (a) i = j or (b) M, rc,_ = M,,c.j and for all I, where

i < l <j or j < I < i, M,_c.t = M, rc5.

Table 2 on page 21 gives an example of Problem 1. The associated algorithm is as follows.

Before: M[src][i] = i I 2 2 2 2 3 3 2 2 2 2 2 i i 2

Given: V[i] = 0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0

k = 6

After: M[src] [i] = i 1 2 2 2 2 3 3 6 6 6 6 6 1 1 2

Table 2: An example of Problem 1.

Algorithm 1. Value update in a specified region.

Input: M,,_,i and Vi, where 0 < i < N- 1, and the new value k.

Output: The updated M,r¢,i, 0 < i < N - 1.

Method: It includes the following steps:

.

.

.

.

Find the value of M,r¢,i where Vj = 1. Then, each CAM cell compares its M_¢,i with

the value to see if they are equal.

Find the right boundary of the region, i.e., find the largest l, where l > j, such that

M,,_,t = M_,c,l-1 = ... = M_,i+l = M,_¢,j but M_,l+l 5¢ M_r_,j.

Find the left boundary of the region, i.e., find the smallest I, where 1 _< j, such that

M,_c,l = M,_,t+l M,_,i_I = M,_¢,i but M_c,l-1 _ M,_,i.

Broadcast the new value k to every CAM cell within the region and update its M,,¢,i,

using the obtained boundary information to control. []

The total number of instructions used is 19 (5 vector instructions and 14 scalar instructions,

not including I/O operations provided by the host program), which is independent of the

number of CAM cells, N. Thus, the complexity of this algorithm depends on the complexity

of vector instructions. If we assume that execution of each vector instruction takes a constant

time, the complexity of the algorithm is O(i).

6.3 Region separation by renumbering

Now, using the basic techniques from Problem 2, the real test. A true vision machine has

2-dimensional connectivity; the CAM is only 1-dimensionally connected.

21

Problem 3: Given an M × N matrix in which each clenmnt is an integer, renmnber

elements of the matrix ill such a way that each region (a region consists of the adjacent

elements with the same value) is assigned a unique value.

An application related to this problem is to use different colors to distinguish separate

regions in an image. Table 3 on page 23 gives an example (M = N = 16) of Problem 3.

We try to solve (or partially solve) tlle problem by two steps, one for rows and the other

for colunms. At the first step, different regions in each row (i.e., the groups of the adjacent

elements with the same value) are renmnbered by an increasing sequence of nonnegative

integers.

'Then, in the second step, several columns (one column at a time) are selected and the

regions of flmse columns are renumbered so that elements at different rows but in the same

region have the same number. How many columns we have to select depends not only on

the distribution of regions in a matrix but also on which colunms are selected. If a column

goes through every region in the matrix, selecting this colmnn will be enough, i.e., it is the

best case. The worse case can be that we have to select K columns, where K is proportional

to the number of columns in the matrix, M. Also, sometimes there may not be sufficient

information for selecting the appropriate columns, even though they exist. Therefore, colmnn

selection is heuristic. We believe that, given a characterization of the kind of pictures to be

processed, heuristics can be selected to make the entire process proportional, on average, to

the maximum number of regions touching any single horizontal line.

In the following, we give an algorithm which does row renmnbering and one column

renmnbering. Note that if a region is not convex and a row/column crosses the region more

than once, elements in the same region will be renumbered with different numbers (see the

example in Table 4). Table 4 on page 24 gives the result of applying the algorithm to the

input matrix given ill Table 3, by selecting a particular colunm.

Algorithm 3. Region separation by renunlbering.

Input: The M × N matrix to be processed, stored in memory location S of each CAM cell,

and the selected column k.

Output: The processed matrix stored in memory location R of each CAM cell.

Method: The required M × N CAM cells are divided into M rows of N cells each, and

their addresses are assmned to be two dimensional, i.e., CAMi,j, where 0 < i < M - 1 and

O<_j<N-1.

1. For each row of the matrix (i.e., &,0 to S/,2v_l, 0 < i < M - 1), do:

i) Compare &,j with &5+I, 0 _< j < N - 2, to see if they are equal.

compared with the starting value provided by the instruction.

ii) If S_,j 7_ &,j+l (including the starting value and &,o), set Ri,j+l
otherwise.

iii)

oei,0 is also

= 1, and 0

Do a prefix sum ol)eration on each row of Ri,j. So, different regions at each row

of Si 5 have been renunlbered in an increasing sequence of nonnegative integers

22

CAM cell: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Before 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

separation: 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

separation: 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0

0 0 0 0 0 0 2 2 2 2 2 2 2 0 0 0

0 0 0 0 2 2 2 2 2 2 2 2 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: An example of Problem 3.

23

Selected column: k = 8

CAM cell: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

After 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

separation: 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2
0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2

0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2

0 0 0 0 3 3 3 3 3 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

0 0 0 0 0 0 0 5 5 5 5 5 2 2 2 2

0 0 0 0 0 0 5 5 5 5 5 5 5 2 2 2

0 0 0 0 5 5 5 5 5 5 5 5 5 2 2 2

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Table 4: The result of applying Algorithm 3 (k = 8) to tile input matrix given in the last

table.

24

stored in Ri,j.

2. For colunm k of the matrix (i.e., Si,k, 0 < i < M - 1), do:

i) Compare Si,k with Si+l,k, 0 < i _< M - 2, to see if they are equal. S0,k is also

compared with the starting value provided by the instruction.

ii) If Si,k ¢ Si+l,k (including the starting value and So,k), set V_,k = 1, and 0 other-

wise.

iii) Do a prefix stun operation oll tile column of Vi,_. So, different regions at column

k have been renumbered by an increasing sequence of nonnegative integers stored

• in Vi,k.

3. For each row of the matrix, if a region at tile row contains the kth elmnent, substitute

all the Ri,j in this region by Vi,k. []

The number of instructions needed for this algorithm is 26 (9 vector instructions and 17

scalar instructions), which is independent of the number of CAM cells (i.e., the size of a

matrix). Thus, if we assume that execution of eadl vector instruction takes a constant time,

the complexity of the algorithm is O(1). Since the total time to process a matrix depends on

the number of columns selected, the complexity of processing the matrix can be from O(1)

for tile best case to O(N) for the worst case.

Work on this algorithm is still in progress, particularly with respect to column selection

and tile coalescence of regions found from separate columns. However, it seems to give

remarkably good efficiency on tlfis problem for wlfich the ardfitecture would at first glance

seem rather ill-suited. This gives us confidence in the usability of CAM in general-purpose

applications.

6.4 Analysis

The simulation indicates that the defined instruction set is sufficient for the implemen-

tation of the three algorithms and so it can be also used to realize many other parallel

algorithms. We have found that for the three algorithms, a small percentage of instructions

are vector instructions (about 23% on the average). We tried to loosen the restrictions to

one data path and one general-purpose register, i.e., allow two data paths to memory and

two registers, and found that it saves a nmnber of scalar instructions (about 11% of the

total number of instructions on the average). We have also compared the situations in which

the number of control registers is assumed to be different. We have found that using more

titan one register for activity control, we can also save scalar instructions (about 12% on the

average).

25

7 High Level Language

Relative complexity of programming can be a drawback to any parallel architecture, but in

a heterogeneous one it can assume critical proportions.

A major component in this complexity is tile number of different representations that

can be used for the various high-level data abstractions the problem is originally represented

in terms of, and the different efficiencies of the algoritlnns that implement the high-level

operations on those representations.

Most programming today still takes place at a very low level, that is to say that the

prdgrammer makes the choice of data-structure and algorithm and indeed does so at a very

explicit and detailed level. This has, for the heterogeneous architecture, the dual infelicity

of making the programmer tangle with a serious optimization problem, and facing the pos-

sibility that the solution to the problem may change drastically with a small perturbation

of the overall code, requiring a complete rewrite. (In practice, the complete rewrite is rarely

done, and the application proceeds with a suboptimal implementation.)

The solution is to have the code written in terms of the high-level abstractions in the

first place, and have the system solve the optimization problem of the representations. Then

the programmer can make his small change, and the system can emit completely different

low-level code, but the programmer does not even need to know this.

This is largely the intent of object-oriented programming, but there are two major dif-

ferences. First, in the typical object-oriented system, the choice of data structure is a simple

default mapping of a single implementation to each high-level abstraction: there is no opti-

mization of data-structures at all. This is to a large extent a result of the second difference,

namely that the programmers are generally required to write their own abstractions, and it

is hardly reasonable to expect them to write all possible implementations of the abstraction

they are trying to encapsulate!

Rather than providing a (simplistic) mechanism for the programmer to encapsulate ab-

stractions, our method is to provide a set of very general abstractions and the operations

on them. The implementation actually contains many different algorithms corresponding to

each operation, and has a number of different representations for each of the abstract types.

The specific implementation of a given program can then be formulated as an optimization

over all the different implementations implied by the choices.

For example, consider a CAD program where there is an operation to change the color

of some object on the screen, and an operation to manipulate a collection of subparts as a

single part. Both these operations require the manipulation of a connected component of an

abstract graph, of object abstractions on one hand and of pixels on the other. In both cases

the required components can be found by the transitive closure of the appropriate adjacency

relation, but in practice they would never be implemented the same way.

In implementations on conventional machines, graphs are commonly represented as pointer

structures; this is the representation assumed by most of the standard texts for discussing

the complexity of graph algorithms. Parallel processing texts tend to use a bit-matrix rep-

26

resentation(or a numerical matrix for graphswith weightededges).1i, practice many cases
wherewhat is being done could be describedby graph operations, such as the screenfill
mentioned above, the representationis highly customized,for examplean array of node
valueswherethe edgesare an implicit meshconnection.

Beginningwith eachof the possiblerepresentationsfor the graph, thereareseveraldiffer-
ent algorithms that could be usedto perform the operationsneeded.Many of thesepresent
the option of producing the result in different ways, i.e. as a modification of the original
datastructure, as a new datastructure, or as a representationof the abstract result in a
different datastructure.

.. There are two major thrusts to our high-level language research. The first is to identify

and implement a sufficient range of high-level abstractions, i.e. arrays, trees, graphs, sets,

relations, etc, to cover a wide variety of useful programs. The implementations will not

be simply a particular representation of each object, but as many different representations

as resources and ingenuity permit. Each representation will be parameterized to allow an

estimation of its cost in terms of time, space, cmmnunications bandwidth, etc.

The second thrust is, given a program specified in terms of the high- level primitives,

reduce it into an efficient implementation. This is more straightforward than the first part.

We take the dataflow graph of the high-level program and "blow it up", expanding ead_

object node into a cluster of representation nodes, and then replacing each operation edge

in the original graph and replacing it with a whole subgraph of representation conversion-

operation-representation conversion sequences corresponding to all the ways we have imple-

mented which can convert some form of the input object to some form of the result object.

The resulting graph, although large, exceeds the original program by only a constant

factor, which is related to the square of the number of representations that have Been imple-

mented. There are (surprise!) a number of representations and several efficient algorithms

for finding the least cost path through such a graph. This is the basis for choosing the

representations and algorithms in the compilation process.

The compiler itself will obviously constitute a symbolic processing program of no small

proportions, equivalent to a fair-sized expert system. Thus, development of the techniques

necessary to implement the compiler efficiently on the CAM dovetail nicely with the task

of developing the CAM as a platform for symbolic processing. For example, the production

of a parameterized library of algorithms for the compiler to work from, can be seen as a

formalization and rigorization of building a programming methodology for the CAM, which

has been a priority through out the project.

27

Abstractoperationsforoneiterationof a ininimal spanning tree algorithm.

@extract the@ select theQfor m a graph@ collapse th@

set of sets of minimum- using only connected
edges incident weight edge these edges components
on each node from each set into nodes

The simple graph for an abstract program gives rise to a "blown up" graph of possible
implementations. An optimal path through the latter is then found.

spanning

The graph can be reduced by precompuling the optimal path from each input node
to each output node. The reduced graph can then be used as a primitive.

28

